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Empiricism or self-consistent theory in chemical kinetics?
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bstract

To give theoretical background for mechanochemical kinetics, we need first of all to find a possibility to predict the kinetic parameters for real
hemical processes by determining rate constants and reaction orders without developing strictly specialized and, to a great extent, artificial models,
.e. to derive the kinetic law of mass action from “first principles”. However, the kinetic law of mass action has had only an empirical basis from
he first experiments of Gulberg and Waage until now, in contrast to the classical law of mass action for chemical equilibrium rigorously derived in

hemical thermodynamics from equilibrium condition. Nevertheless, in this paper, an attempt to derive the kinetic law of mass action from ”first
rinciples” is made in macroscopic formulation. It has turned out to be possible owing to the methods of thermodynamics of irreversible processes
hat were unknown in Gulberg and Waage’s time.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Mechanochemical reactions in solids are heterogeneous non-
quilibrium reactions. Kinetics of mechanochemical reactions
sually is described by means of ordinary chemical kinetics
sing chemical affinity as the driving force of reaction:

i = f

(
Ãi

RT

)
(1)

here the function f is, in general, a law of chemical kinetics; Ji

he rate of each ith partial reaction and the affinity Ãi is a linear
ombination of chemical potentials and stoichiometric coeffi-
ients. If for simplicity and clarity we analyze a simple chemical
eaction where the substance 1 turns into 2 in the conditions of
tationary regime 1 ↔ 2 the common kinetic equation is:

= k

(
exp

Ã

RT
− 1

)
= k

(
exp

μ1 − μ2

RT
− 1

)
(2)
here k = krcr and kr is the rate constant of the reverse reac-
ion, cr is the concentration of the product. However, this kinetic
quation up today has not a theoretical base because it is derived
rom the empiric kinetic law of mass action.
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In general, mechanical action may be applied to change kr,
r/and cr, or/and μ1, or/and μ2. To change kr the mechanical
ction needs to influence free energy of activated complex (it
s still open problem). How does mechanical action change cr
s not clear for non-equilibrium state. What indeed remains it is

echanical change of chemical potentials μ1 and μ2, which can
e very influential due to exponents: a small change of μ will
esults in a great change of J. However, the function f up today
as only empirical derivation. In fact, until now all handbooks
n chemical kinetics and chemical thermodynamics start the
escription of kinetics with so called kinetic law of mass action
iven below by Eq. (3), which is a basic postulate of chemical
inetics. Long time ago, Guldberg and Waage [1] proposed this
eneric law to describe their observations on the rate of chemical
eactions as a linear function of concentrations ci of substances:

= kfcj − krcr, (3)

here kf and kr are rate constants of the forward and reverse
eactions, respectively, cj and cr are concentrations of reactants
nd products, respectively.

Eq. (1) represents the kinetic law of mass action, which has
ad only an empirical basis until now, in contrast to the clas-
ical law of mass action for chemical equilibrium rigorously

erived in chemical thermodynamics from equilibrium condi-
ion [2]. Although, apparently, the first published experimental
bservation of the linear dependence of the chemical reaction
ate (inversion of sucrose) on the concentrations of reagents was

mailto:gutman@bgu.ac.il
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ade in 1850 by Wilhelmy [3], at about the same time Guldberg
nd Waage carried out their work on the “law of mass action”
nd derived an equilibrium equation on the basis of assumed
mpirical kinetic equations [1]. They studied chemical affinity
“forces”) and tentatively suggested that the rates of reactions
ight be proportional to the forces which are proportional to

oncentrations [4]. Thus, for the reaction

A + bB ↔ cC + dD (4)

he force in the left-to-right direction should be proportional to
A]a[B]b, and the force acting from the right to the left is propor-
ional to [C]c[D]d. It was assumed that if the forces in a system
ere equal and oppositely directed, chemical equilibrium was

eached with the equilibrium constant:

= [C]c[D]d

[A]a[B]b
. (5)

However, Eq. (3) was only postulated on the basis of exper-
mental observations, because it could not be obtained by any

ethod of chemical thermodynamics concerned with equilib-
ium processes while chemical reactions are essentially irre-
ersible processes.

. Arrhenius and Eyring equations in chemical kinetics

In 1889, Arrhenius analyzed temperature dependence of mea-
ured reaction rates according to the equation which is now
alled the Arrhenius equation. However, it would be fair to
mphasize that this equation was certainly first suggested by
an’t Hoff in 1884 [5]. Indeed, van’t Hoff analyzed the temper-
ture dependence of the equilibrium constant (now called the
an’t Hoff equation) and of the forward and reverse reaction
ates. The effect of temperature on the reactions rates k was
ound by Arrhenius empirically as a linear relationship between
og k and 1/T. In fact, the relationship is of the same form as the
ne in van’t Hoff analysis:

∂ lnk

∂(1/T )
= −Ea

R
, (6)

here Ea is an empirical calorimetric parameter called the acti-
ation energy and k is the observed reaction rate. More specif-
cally, Arrhenius did not consider a temperature dependence of
he energy Ea and therefore adopted van’t Hoff’s simpler equa-
ion:

= A exp

(
− Ea

RT

)
, (7)

here A is a pre-exponential term expressed in the same units as
. An assumption inherent in most applications of the Arrhenius
quation to kinetic analysis is that this energetic term has some
nherent meaning and correlates with the enthalpic activation
arrier for the process under study. It turns out that this is a rea-

onable assumption, at least for reactions that are characterized
y large (>10 kcal/mol) Ea values. Similarly, the pre-exponential
actor A is often qualitatively correlated with the entropic com-
onent of the activation barrier.

k

pounds 434–435 (2007) 779–782

The introduction of a value Ea having the dimension of energy
nd called activation energy (strictly speaking, a better name
ould be experimental activation energy) gives rise to many

peculations. Note, by the way, that the term activation energy
mplies overcoming certain energetic barrier, which is obvious
n models of the collision theory and of the transition state the-
ry [6], but is never obvious in the Arrhenius law. One of such
peculations can be demonstrated as the “derivation” of the Tafel
quation from the Arrhenius equation assuming Ea to be a linear
unction of overpotential. Obviously, Ea becomes clearly defined
nly in case of its application to a specific physical model of a
arrier process, which, however, is usually far from the actual
attern of the reaction. Therefore, experimentally measured Ea
alues often contain little information about the process mecha-
ism, except cases of characteristically differing Ea values (for
nstance, for diffusion or chemical activation).

At the same time, Arrhenius gave an original interpretation of
nergy barrier: he suggested that the equilibrium is established
etween normal and active molecules of the reactant, which
re able to form products without further addition of energy.
ater, this suggestion formed the basis of the modern transition
tate theory and Eyring equation, which is a theoretical construct
ased on transition state model. In 1917, Trautz and Lewis inde-
endently proposed that the rate of reaction is determined by the
requency of molecular collisions. This is now known as the col-
ision theory of chemical reaction kinetics [6].

Finally, in 1935, Eyring developed a statistical treatment
alled the theory of absolute reaction rates or transition state
heory, according to which the reaction occurs in two steps:
a) equilibrated conversion of the reactant(s) into an activated
omplex; (b) decomposition of the complex (which occurs at
definite rate) [6]. However, he was forced to use Eq. (3), i.e.
ostulate. Both the Arrhenius and Eyring equations described
he temperature dependence of the reaction rate. Strictly speak-
ng, the Arrhenius equation can be applied only to gas reactions.
he Arrhenius equation is founded on the empirical observation

hat conducting a reaction at a higher temperature increases the
eaction rate. The Eyring equation is used in the study of gas,
ondensed and mixed phase reactions—all cases where a simple
ollision model is not very helpful [6]. The collision model of
he reaction rate assumes that the rate constant is written as Eq.
7) with A = pZ, where Z is the collision rate and p is the steric
actor. If we consider this equation in terms of changing temper-
ture, the steric factor clearly does not depend on temperature.
turns out to be only magnitude weakly dependent on temper-

ture: varying T from 500 to 600 K changes Z by less than 10%.
t is, therefore, a reasonable approximation to assume that the
Z part of the above equation is constant, and we come to the
rrhenius equation again.
The Eyring equation is derived in the theory of absolute reac-

ion rates using linear rate-concentration dependences of Eq. (3)
ype as a postulate ([6], pp. 12–13) and introducing a specific
ate (rate constant) in the form:
c = kBT

h
exp

(
−�F+

RT

)
, (8)
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here kB and h are Boltzmann and Planck constants, respec-
ively, and �F+ is the free energy of activation. Further replace-

ent of the exponent with its equivalent in terms of the partition
unctions of the species using the methods of statistical mechan-
cs expands and complicates the analysis, but does not change
he fact that the mentioned postulate underlies it.

. It is possible to proceed without postulates and
ctivation energy

Meanwhile, classic thermodynamics using the Gibbs formu-
ation of the condition for chemical equilibrium can give the
lassic law of mass action strictly enough only for the equilib-
ium constant, but not for the reaction rate.

Since the basic equation of chemical kinetics given by Eq.
3) is until today only postulated, but not derived theoretically, a
asic question arises: what is it—empiricism or self-consistent
heory in chemical kinetics? The answer is evident: unless the
inetic law of mass action is derived strictly on the basis of
undamental laws, the chemical kinetics will not be based on
elf-consistent theory. Hence, the problem is to find a way
or deriving the kinetic law of mass action without any postu-
ates. To solve this problem, we must apply thermodynamics of
rreversible processes because we are dealing with irreversible
hemical reactions.

However, the conviction that the use of basic Eq. (3) as a pos-
ulate confirmed only empirically is inevitable is so deep-rooted
ith the researchers that even in non-equilibrium thermodynam-

cs, when describing chemical reactions, authors usually refer to
q. (3) as a postulate [2]. Thus, even in non-equilibrium ther-
odynamics they proceed from the idea that it is accepted from

he experiment in chemical kinetics that the kinetic law of acting
asses, i.e. Eq. (3), is valid for reactions in ideal gases or in dilute

olutions. Then this equation is used as a postulate for deriving
he kinetic equation in the form of the reaction rate dependence
n chemical affinity [2]. Thus, the problem of substantiation of
he kinetic equation calls for a solution.

Therefore, we are forced to revise this approach and sug-
est a different way. Making attempts to derive the kinetic law
f mass action from the first principles, we have to resort to a
ifferent approach and use a fundamental transport law which
s well proven in non-equilibrium thermodynamics by statisti-
al methods. In non-equilibrium thermodynamics, generalized
orces (in chemistry they imply the reaction affinity Ã as its
riving thermodynamic force) are connected with generalized
uxes (in chemistry they imply the reaction rate J) and their
ction produces entropy with the rate ∂S/∂t = JÃ/T. The function
= f(Ã/RT) is, in general, an unknown law of chemical kinetics.

For the sake of simplicity and clarity, let us analyze a simple
hemical reaction, where the substance 1 turns into 2 under the
onditions of a stationary regime. These conditions are satisfied
f the height of the barrier to be overcome greatly exceeds the
ifference of chemical potentials corresponding to these states

nd almost all the molecules are distributed between the initial
nd the final state of the present reaction. Intermediate products
n the top of the barrier are unstable and decompose into the
nitial and final product. Thus, there is no product accumula-

J
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ion along the reaction path x, and therefore the flux is constant
verywhere.

To find the reaction rate J, we subdivide the reaction path
long its x-coordinate into a finite number of segments �xi

ith chemical potential differences �μi corresponding to these
egments (

∑
i�μi = �μ) [7]. Then the total reaction may be

epresented as a chain of consecutive substance transformations
roceeding in consecutive i partial reactions with respective
hemical affinity Ãi = −�μi, the value

∑
iÃi = Ã representing

he affinity of the total reaction, i.e. Ã = −�μ. On sufficiently
mall segments (Ãi � RT is achievable, since the number of
egments is arbitrary) the unknown function Ji = f (Ãi/RT )
an be linearized for small arguments (according to the physical
ense, Ji = 0 if Ãi = 0):

i = Ãi

(
∂Ji

∂Ãi

)
�xi→0

= −
(

ki�xi

RT

)
�xi→0

∂μi(x)

∂x

= −Li gradμi, (9)

here we have used [�μi/�xi]�xi→0 = ∂μi(x)/∂x, and ki and
i are certain constants. The linear form of this equation is invari-
nt for all transport phenomena (diffusion, electric current, heat
onduction, filtration, migration, etc.). Summing–integrating the
ntropy production along the total reaction path and using the
onditions of stationary regime J = Ji, we obtain for the reaction
n the whole:

∂S

∂t
= T

∑
i

∂Si

∂t
= −

∑
i

Ji

∂μi(x)

∂x
|�xi|�xi→0

= −J

∫ 2

1

∂μ(x)

∂x
dx = −J�μ = JÃ, (10)

here integration is carried out over the entire reaction path from
he initial (1) to the final (2) state.

Thus, the general form of the entropy production in the course
f a chemical reaction is valid for chemical reactions described
y any non-linear kinetic law. A linear phenomenological equa-
ion in the invariant form of the transport equation (resulting
rom the entropy production calculation) approximates the reac-
ion rate near the equilibrium state or at sufficiently small �xi

egment of the reaction path. Of course, this does not necessar-
ly mean the existence without fail of a linear dependence of
he reaction rate on the total affinity of the entire reaction con-
isting of several slow sequential partial reactions for which the
inearization is possible.

To find the unknown kinetic law J = f (Ã/RT ), let us write
standard expression of chemical potential through the activity
(x):

(x) = RT lna(x) + μ0(x), (11)

here μ0(x) is a standard value for every point x (i.e. a profile of
he standard chemical potential along x-coordinate). Substituting
nto the general transport equation, one obtains:
(x) = −L(x)
∂μ(x)

∂x
= −RTL(x)

a(x)
exp

[
−μ0(x)

RT

]
∂

∂x
exp

μ(x)

RT
.

(12)
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ubdividing this equation as follows:

(x)
a(x) exp(μ0(x)/RT )

L(x)
= −RT

∂

∂x
exp

μ(x)

RT
(13)

nd integrating along x from the initial state (1) to the final (2)
tate with the account for the conditions of a stationary regime
(x) = J over the entire path from 1 to 2, one obtains:

= RT exp(μ2/RT )∫ 2
1 (a(x)/L(x)) exp(μ0(x)/RT )dx

(
exp

μ1 − μ2

RT
− 1

)
,

(14)

here subscripts 1 and 2 are related to chemical potentials and
ctivity in the states 1 and 2, respectively. Denoting the constant
uantity by

= exp(μ2/RT )∫ 2
1 (a(x)/L(x)) exp(μ0(x)/RT )dx

, (15)

e obtain the general kinetic law:

= RTL

(
exp

μ1 − μ2

RT
− 1

)
= RTL

(
exp

Ã

RT
− 1

)

= k

(
exp

Ã

RT
− 1

)
, (16)

hat in linear approximation for Ãi � RT (near equilibrium
tate) transforms into the linear form of transport equations:

= LÃ. (17)

Now, we can rigorously derive the kinetic law of mass action
n the form which was earlier only postulated from experimental
bservations. Let us denote:

r = RT exp(μ0
2/RT )∫ 2

1 (a(x)/L(x)) exp(μ0(x)/RT )dx
and

f = kr exp

(
−μ0

2 − μ0
1

RT

)
. (18)

ubstituting Eq. (18) into the general kinetic law (16) with
ccount of Eq. (11) written for μ2, we rigorously obtain the
pounds 434–435 (2007) 779–782

inetic law of mass action in the form of Eq. (3):

= kfa1 − kra2 = k′
fc1 − k′

rc2 (19)

nd the classic law of mass action:

≡ kf

kr
= exp

(
−μ0

2 − μ0
1

RT

)
= a

eq
2

a
eq
1

(20)

here kf and kr are the rate constants of the forward and reverse
eactions, respectively; superscript eq denotes the activity in the
quilibrium state with the equilibrium constant K.

Unfortunately, usually an opposite situation takes place,
amely, a kinetic equation in the form of Eq. (16) is obtained
rom the empirically and then postulated Eq. (3) (see, e.g. [2],
tc.). We, however, derive the kinetic Eq. (16) without resorting
o empirical Eq. (3) and, in the long run, obtain Eq. (3) rigorously
rom the first principles.

. Conclusion

The kinetic law of mass actions is derived rigorously from
on-equilibrium thermodynamics using invariant properties of
he transport law applied to the elementary steps along the reac-
ion path. Therefore, all non-linear equations of chemical kinet-
cs became scientifically rigorous, and theoretical derivation of
he kinetic law of mass action in chemistry and mechanochem-
stry becomes possible without an empirical background, use of
ostulates and resort to the activation energy.
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